Remedial Cutoff Walls for Dams in the U.S.: 40 Years of Case Histories

Donald A. Bruce¹

¹ Geosystems, L.P., P.O. Box 237, Venetia, PA 15367; e-mail: dabruce@geosystemsbruce.com

ABSTRACT

Since 1975, there has been a rich history of embankment dam remediation in the U.S., mostly to prevent seepage and erosion through and under these structures. The history of these works has been described by many authors, the compendium of Bruce (2012) being the most recent, addressing projects completed up to 2010. Since then, a number of extremely large remediations have been completed, including cutoffs at Clearwater, Wolf Creek, Center Hill, Pine Creek, Bolivar Dams, and Herbert Hoover Dike. Together these more recent projects greatly exceed the combined cost of similar works conducted in the prior 35 years. This paper provides an updated compendium of these projects, and provides detailed references for future researchers to develop.

1. INTRODUCTION

The National Inventory of Dams (NID) has listed over 84,000 dams in the United States which meet its criteria for inclusion (Ragon, 2011), namely:

- 1. High hazard classification loss of one human life is likely if the dam fails.
- 2. Significant hazard classification possible loss of human life and likely significant property or environmental destruction.
- 3. Low hazard classification no probable loss of human life and low economic and/or environmental losses, but the dam:
 - equals or exceeds 25 feet in height and exceeds 15 acre-feet in storage;
 - equals or exceeds 50 acre-feet storage and exceeds 5 feet in height.

Almost 14,000 dams meet Criterion 1. Only 4% (3,075) are federally owned, and these mainly date from the earlier third of the Twentieth Century. Over 87% of the total are primarily classified as earth embankments, while no other category exceeds 3% of the total. The main primary purposes are recreation (35%), flood control (17%), fire protection in stock/small fish ponds (15%) and irrigation (10%), while less than 3% generate power. Many structures are multipurpose. Figure 1 summarizes their completion dates: about 50% were completed between 1950 and 1979, while the median age in the year 2016 is about 65 years.

Figure 1. U.S. dams by completion date. (From National Inventory of Dams, CorpsMAP, <u>http://nid.usace.army.mil</u>, 2010.)

Whereas it may be calculated from the National Inventory of Dams (2010) that the cumulative "end-to-end" length of all the U.S. dams is around 18,000 miles, preliminary estimates put the cumulative length of levees in the U.S. at over 120,000 miles. Only about 14% of this total may be regarded as federal, and referred to by Halpin (2010) as "robust." The balance includes municipal, local and agricultural structures often featuring little engineering design, patchwork construction and minimal periodic maintenance, since they were traditionally regarded as "simple" structures.

Certain design assumptions and construction techniques used in the dams and levees built prior to, say, 1960, would not be acceptable today, and have left behind fundamental flaws in some structures. Appropriate filter criteria for embankments and uplift/sliding issues in concrete dams are two obvious design related examples, while old approaches to rock surface preparation and foundation treatment would also fall into the unacceptable category. In addition, there are two overriding geological considerations which directly influence the serviceability, reliability, and performance of the dam and levee system. These considerations are (i) the presence of solution susceptible carbonate and evaporite formations, and (ii) the potential for seismic activity.

Regarding point (i), there is a huge swath of karstic limestones and dolomites which outcrops from Pennsylvania to Alabama, while Martinez et al. (1998) have estimated that evaporites underly about 40% of the contiguous 48 states. Regarding point (ii), there are highly seismic active zones centered on New Madrid, MO, and Charleston, SC, as well as the more famous organic belts of the Western U.S.

Very simplistically, therefore, geology and seismicity — either alone or together — pose a clear and present threat to tens of thousands of water-retention structures nationwide, but especially to those in the basins of the central Mississippi-Missouri river system and its major tributaries such as the Tennessee and Ohio rivers, and to those in the environs of the greater Rocky Mountain chain. To these concerns must be added the more transient, but equally destructive, threat posed by extreme weather events to levees all across the country, but especially in the upper Midwest, the lower Mississippi, and central California. The problem in the New Orleans area is exacerbated by the continual regional settlement of the entire delta area, estimated at up to ½ inch per year.

Galvanized by the Gulf Coast tragedy of August, 2005, the federal government, in the form of the USACE (U.S. Army Corps of Engineers), developed and implemented a radically

different approach to dam-remediation prioritization, building on the pioneering expertise and experience from the Bureau of Reclamation. This "risk-based" or "risk-informed" approach has since become a model for other bodies with large portfolios of dams, including the Tennessee Valley Authority and the larger utilities. This new approach has been the catalyst for the prioritized and expedited repair of many major structures in recent years.

2. BASIC CLASSIFICATION OF CUTOFF WALL TECHNOLOGIES

Cutoff walls for existing structures can be divided fundamentally into two categories (Bruce, 2012):

- <u>Category 1</u> cut-offs involve backfilling of a trench or shaft previously excavated under bentonite slurry or similar supporting medium. Construction involves the use of backhoes, grabs, hydromills and/or secant pile rigs.
- <u>Category 2</u> cut-offs involve the mixing of the fill and/or foundation soils in situ. Examples include conventional (i.e., vertical axis) Deep Mixing Methods (DMM), the TRD Method and the CSM Method.

The prime subject of this paper is the Category 1 cutoffs, because they have been employed most frequently in dams, given their undisputable advantages in terms of depth and geological application. However, it would be remiss not to first acknowledge the rich history of Category 2 structures in dam and levee remediation.

Traditional, vertical axis Deep Mixing Methods (DMM) have been used since 1987 on many dam and levee remediation projects throughout the U.S. Most notable have been seepage cutoffs at Cushman Dam, WA (1992), Sacramento Levees, CA (1990 and 2003), Lewiston Dam, ID (2001), and seismic remediations at Jackson Lake Dam, WY (1988), Sunset North Basin Dam, CA (2006), Clemson Diversion Dams, SC (2005), and San Peblo Dam, CA (2009). In addition, the massive seismic retrofits at Wickiup Dam, OR (2002) and Tuttle Creek Dam, KS (2007) were undertaken with jet grouting and cement-bentonite walls, respectively, although both were initially candidates for some type of DMM treatment (Stare, et al., in Bruce, 2012). A prime area for the use of conventional DMM has been in the New Orleans area, for the strengthening of very soft foundations prior to rebuilding levees higher than previously existing. A detailed history of this work is provided by Bruce, et al., 2012, while by far the biggest project (LPV 111) was completed in 2011 and is described by several authors in the New Orleans Conference (2012) and in other sources (Schmutzler and Pagliacci, 2012; and Schmutzler and Leoni, 2013).

The LPV 111 project is likely the largest DMM application completed outside Japan, and the 5 miles of raised, rebuilt levee are an essential component of the New Orleans Hurricane Protection System. Two different types of DMM, including the jet-assisted "Turbomix" type, were used to create columns 5 feet in diameter, overlapping to create panels of soilcrete orthogonal to the levee axis. These panels were around 70 feet deep, and 60 feet wide, and were spaced at 16- foot centers for the whole alignment. This involved over 30,000 discrete columns to treat over 1.6 million cubic yards of soil. The work was conducted from January 2010 to March 2011, and used 8 DMM rigs and grout plants. Over 460,000 tons of slag-cement binder was placed. Of particular interest is the fact that the USACE employed the Early Contractor Involvement (ECI) process to expedite contractor selection and the project schedule, while at the same time permitting the contractor an intense and meaningful involvement in the design and specification of the project. Further, much of the DMM return material was found suitable for use in building the core of the new levee, in lieu of typical clay backfill — a considerable cost and schedule advantage.

In recent years, considerable use has been made of the two variants of DMM, new to the U.S. One is the TRD Method (trench remixing and cutting, deep) which, in very simple terms, is a large and very powerful chain saw which progresses laterally through the ground, cutting and blending (with grout) to create a continuous soilcrete wall. Developed in Japan in 1993-1994, it is capable of producing a cutoff from 2 to 3 feet thick, to depths approaching 180 feet, even in dense and bouldery soils, provided they are "rippable." There have been several applications in the U.S. since its introduction in 2006, with the biggest, by far, being at Herbert Hoover Dike, FL, where 5 miles of wall as deep as 80 feet were constructed. The vertical nature of the cutting and blending process provides a high degree of homogeneity in the soilcrete, although care must be taken to compensate for thermally-induced stresses during curing. Production rates have been found to be extremely high in appropriate conditions, and the environmental impacts are minimal (Burke, et al. in Bruce, 2012).

The second, newer DMM variant widely seen in levee remediation is CSM (Cutter Soil Mix). The technique is a joint German-French development, commencing in 2003, and building on experience with hydromill (trench cutter) and conventional DMM techniques. Kelly-mounted CSM can comfortably reach depths of 100 feet, while newer cable-suspended cutters are reportedly capable of over 180 feet depth. Wall thicknesses of 2 to 4.5 feet are feasible and, like TRD, can provide soilcrete of excellent homogeneity, with high degrees of real time QC. Again the largest project yet conducted was at Herbert Hoover Dike, FL, where CSM was used to install about 12 miles of soilcrete cutoff, in several different phases. One of the inherent advantages of the CSM method is that the cutter itself can be mounted on non-specialized carriers. Thus, CSM is found to be competitive on quite small projects also, because the costs of mobilization are moderate (Weidenmann, in Bruce, 2012).

Most recently, and as described in other papers in this Conference, conventional DMM has been used on the massive seismic retrofit of Perris Dam, CA, and for construction of a cutoff at Buckeye Lake Dam, OH. In the latter case, there was a rare opportunity to compare the relative performances of two distinctly different types of Category 2 walls, namely DMM, and the DeWind "One Pass" system, not dissimilar to TRD in basic concept. The DeWind method has now been used on several major cutoffs and is quickly gaining both technical reputation and market share.

Reverting to Category 1 walls for dams, these are built through and under existing structures by first excavating the in-situ materials, and thereafter filling the excavation with an engineered "backfill," typically cement based. During the excavation phase, the trench or panel must be stabilized against collapse by employing a bentonite or polymer slurry. Only when the cutoff is being built in rock by the secant pile method, is it not necessary to use such slurry, although other methods such as full-length, temporary casing are required in extreme conditions.

An earlier review by Bruce et al. (2006) detailed 20 North American dams (including one in Canada) which had been remediated by such diaphragm walls in the period 1975-2005. These are shown in Figure 2, and represent almost 7,500,000 ft² of cutoff wall. These walls in dams were constructed by three methods: clamshell (about 50% total area); hydromill (about 35%); and secant piles (about 15%). The majority of the projects, and all of the later ones, have used concrete (conventional or occasionally "plastic") as the backfill, although one (Addicks and Barker, TX, 1978-1982) used soil-bentonite, and another (Twin Buttes, TX, 1996-1999) used soil-cement-bentonite. The deepest clamshell wall (Wells Dam, WA) reached 223 feet, and the

deepest hydromill wall (Mud Mountain, WA) reached over 400 feet. The maximum depth reached by secant piles is 280 feet (Wolf Creek, KY). These projects have had minimum wall widths of 1.5 to 3.1 feet, with most being in the range 2 to 3 feet.

Clearly, the intrinsic advantage of Category 1 walls is that the resultant cut-off material (i.e., the "backfill") can be engineered to provide an extremely wide range of properties, independent of the native material through which the cut-off is to be excavated. This ability is so fundamental that the actual cut-offs are primarily called after the materials themselves, as opposed to the method of excavation:

- conventional concrete walls
- plastic concrete walls
- cement-bentonite walls (CB)
- soil-bentonite walls (SB)
- soil-cement-bentonite walls (SCB)

In all cases except CB walls, excavation is conducted under bentonite (or polymer) slurry which is thereafter displaced out of the trench or panel by the backfill material of choice. It is generally believed that the concept of excavating under a bentonitic supporting slurry was first conceived by Veder, in Austria, in 1938, while the first U.S. application was in 1962 (Xanthakos, 1979). The relationship between backfill material and excavation method is summarized below.

		EXCAVATIO	N METHOD	
I YPE OF BACKFILL	CLAMSHELL	Hydromill	BACKHOE	SECANT PILES
Conventional Concrete	Typical	Typical	Not feasible	Typical
Plastic Concrete	Feasible	Feasible	Not conducted	Rare
СВ	Feasible	Feasible	Common	Not conducted
SB	Not conducted	Not conducted	Very common	Not conducted
SCB	Very Rare	Very Rare	Common	Not conducted

Details of the various excavation methods are provided in older fundamental texts such as Xanthakos (1979) and ASTM (1992), while Bruce et al. (2008) and Bruce (2012) summarize case histories of more recent vintage. Much valuable information may also be obtained in the websites of the major contractors and equipment manufacturers. The following notes are provided by way of introduction, and perspective.

It is often the case that all three techniques may be used on the same project: the backhoe to excavate a "pre-trench," say 20-40 feet deep, the clamshell to excavate through unobstructed fill or soil, and the hydromill to cut into the underlying or adjacent rock. Furthermore, the recent cut-off installation at Wolf Creek Dam, KY, features a combination of panel wall (by clamshell and hydromill) and secant pile technologies, such are the challenges posed by the geological conditions and dam safety concerns during construction.

Each of the different methods has been used successfully and safely on existing dams and levees. The choice of method is primarily dictated by the geotechnical conditions, the depth of the cutoff, dam safety considerations, and the traditional preferences of the respective specialty contractors.

3. UPDATED LIST OF CASE HISTORIES

<u>Appendix 1</u> to this paper provides an updated list of Category 1 cutoffs, referred to above in <u>Figure 2</u>. An enormous amount of work has been conducted for the USACE in the last ten years or so, to remediate firstly four major DSAC-1 Category Dams (highest risk) and more recently the most needy of the DSAC-2 Category Dams (slightly lower risk). It may be estimated that the dollar value of the "new" remediations (i.e., Clearwater, MO, Herbert Hoover, FL, Wolf Creek, KY, Center Hill, TN, Bolivar, OH, Pine Creek, OK, and East Branch, PA) conducted in the last ten years is several times that of the combined expenditure (in current dollars) of the preceding 30 years.

4. FINAL REMARKS

It is clear when studying the numerous technical papers on these projects – and having been involved in one way or another with all of them – that the major technological breakthrough in recent years was the work conducted at Wolf Creek Dam, KY. This is not to short sell the innovative construction methods adopted by three different contractors at Herbert Hoover Dike, FL. However, the standards set in quality control and assurance, in Data Management Systems, in construction methodologies, and in Dam Safety Management at Wolf Creek truly represented a "great leap" forward. As one direct consequence, Owners are now being more prescriptive in their specifications, such is their confidence in the wonderful database of knowledge that has been forthcoming.

It is highly unlikely that the dam remediation market in the U.S. will ever again see the sustained levels of activity which characterized the decade from 2007. However, there is absolutely no doubt that *some* level of activity will endure, and that, in all likelihood, it will be characterized by safe and effective solutions in an increasingly competitive commercial atmosphere.

REFERENCES [in the text and for Case Histories 21-27 in Table 1 only. References for Case Histories 1-20 may be found in Bruce 2012.]

- American Society for Testing and Materials (1992). "Slurry Walls: Design, Construction, and Quality Control." ASTM Publication Code Number 04-011290-38. STP 1129. David B. Paul, Richard R. Davidson and Nicholas J. Cavalli, Editors. September. 425 pp.
- Bassola, P., F. Santillan, L. Bedford, M. Zoccola and B. DeBruyn (2013). "State of Art of the Quality Control at Wolf Creek Dam Remediation Project," International Conference on Large Dams, August 12-15, 15 pp.
- Bedford, L., F. Santillan, P. Bassola, M. Zoccola and B. DeBruyn (2013). "Wolf Creek Dam Foundation Remediation - An Innovative Successful Solution," International Conference on Large Dams, August 12-15, 19 pp.
- Bruce, D.A., A. Ressi di Cervia and J. Amos-Venti. (2006). "Seepage Remediation by Positive Cut-Off Walls: A Compendium and Analysis of North American Case Histories," ASDSO Dam Safety, Boston, MA, September 10-14.

- Bruce, D.A., T.L. Dreese, and D.M. Heenan (2008). "Concrete Walls and Grout Curtains in the Twenty-First Century: The Concept of Composite Cut-Offs for Seepage Control," USSD Annual Conference, Portland, OR, April 28-May 2, 35 pp.
- Bruce, D.A. (2012). "Specialty Construction Techniques for Dam and Levee Remediation," Spon Press an imprint of Taylor and Francis, 304 p.
- Bruce, D.A., P.R. Ca`li and M.L. Woodward. (2012). "The History of Deep Mixing in New Orleans," Deep Foundations Institute, Fourth International Conference on Grouting and Deep Mixing, New Orleans, LA, February 15-18.
- Bobba, R, H.W. Gault and B.B. Vannoy (2013). "Secant Pile Barrier Wall Overlap, Thickness and Position at the U.S. Army Corps of Engineers Wolf Creek Dam, Jamestown, KY" DFI 38th Annual Conference, September 25-28, 10 pp.
- Burke, G.K., D.S. Yang, Y. Nishimura, S. Katsukura and U. Weidenmann (2012), "Specialty Construction Techniques for Dam and Levee Remediation," Chapter 3, Spon Press, an imprint of Taylor and Francis, 304 pp.
- Greene, B.H., and Sekela, J.E. (2007). "1957 Seepage Case History East Branch Dam, PA." Newsletter of the U.S. Society on Dams, Issue No. 143, November 2007.
- Greene, B.H., and Sekela, J.E. (2008). "A Case History of a Major Seepage and Internal Erosion Event at East Branch Dam, Elk County, PA.,"Proceedings of the Conference of the U.S. Society on Dams, Portland, OR, April-May 2008.
- Greene, B.H., Crock, J., Moskovitz, L., and Premozic, J.W. (2010). "Evaluation of Seepage, Internal Erosion, and Remedial Alternatives for East Branch Dam, Elk County, PA." Environmental and Engineering Geoscience, Vol. XVI, No. 3, pp. 229-243.
- Halpin, E.C. (2010). "Creating a National Levee Safety Program, Recommendations from the National Committee on Levee Safety," ASDSO Dam Safety Conference, September 19-23, Seattle, WA, 22 p.
- Martinez, J.D., K.S. Johnson and J.T. Neal. (1998). "Sinkholes in Evaporite Rocks." American Scientist, v. 86, no. 1, pp. 38-51.
- Mauro, M., C. Morales and J. Taylor. (2012). "Self Hardening Slurry Wall Installation by Hydromill at the Herbert Hoover Dike - An Innovative Solution," DFI 37th Annual Conference on Deep Foundations, October 16-19, 8 pp.
- National Inventory of Dams (NID). (2010). http://nid.usace.army.mil.
- New Orleans. (2012). Grouting and Deep Mixing, Proceedings of the Fourth International Conference on Grouting and Deep Mixing, Geotechnical Special Publication No. 228, Edited by L.F. Johnsen, D.A. Bruce and M.J. Byle, American Society of Civil Engineers, New Orleans, February 15-18, 2012, 2, 141 p.
- Ragon, R. (2011). "National Inventory of Dams Provides Interesting Data and Statistics," USSD Newsletter, March, p. 14.
- Santillan, F., J. Rosen, R. Bachus and G. Hlepas. (2015). "Collaborative Data Sharing during Seepage Barrier Wall Construction at Bolivar Dam – Perspectives from Owner, Contractor and Sub-Contractor," Deep Foundations Institute, 40th Annual Conference on Deep Foundations, October 11-13, Oakland, CA, 10 pp.
- Schmutzler, W. and F. Pagliacci (2012). "Digging Deep into the New Orleans Levee Structural Reinforcement Deep-Soil Mixing Project," Foundation Drilling Magazine, ADSC: The International Association of Foundation Drilling, Vol. XXXIII No. 4, May, pp. 18-23.

- Schmutzler, W. and F. Leoni (2013). "New Orleans Levee Improvement Project: An OPA Runner-Up," Deep Foundations Magazine, The Deep Foundations Institute (DFI), January/February, pp. 12-15.
- Stare, D.P., T.L. Dreese and D.A. Bruce (2012). In "Specialty Construction Techniques for Dam and Levee Remediation," Chapter 2, Spon Press an imprint of Taylor and Francis, 304 p.
- Weidenmann, U. (2012). In "Specialty Construction Techniques for Dam and Levee Remediation," Chapter 3, Spon Press an imprint of Taylor and Francis, 304 p.
- Xanthakos, P.P. (1979). "Slurry Walls." McGraw Hill Book Company, ISBN 0-07-072215-3, 622 p.

APPENDIX 1

Details of Remedial Dam Cutoff Projects using Category 1 Panel or Secant Concrete Cutoffs 1975-2016

_							1
	REFERENCES	 ICOS brochures (undated) Fetzer (1988) 		 Soletanche Brochure (undated) 	 Bencor Brochure (undated) 	 Soletanche website. 	 USACE Report (1984) Soletanche (various) Parkinson (1986) Bruce et al. (1989)
	LENGTH	2,000 ft plus 1,250 ft		Approx. 1,000 ft	8,000 ft	8,330 ft plus 12,900 ft	695 ft
DF PROJECT	Dертн	Max. 280 ft		Max 138 ft	110-190 ft	Max 66 ft typically 35 to 52 ft	Max 120 ft including 3 ft into shale
SCOPE (Min. Width	24 in		26 in	24 in	36 in	24 in
	Area	270,000 sf (Phase 1) plus 261,000 sf (Phase 2)		130,000 sf (Phase 1) plus	951,000 sf (Phase 2)	450,000 sf (Phase 1) plus 730,000 sf (Phase 2)	78,600 sf (concrete) plus 28,000 sf (soil- bentonite)
	PURPOSE OF WALL	To provide a "Positive concrete cut-off" through dam and into bedrock to stop seepage, progressively developing in the karst.		To provide a "positive concrete	dam and alluvials.	To prevent seepage and piping through core.	To provide a cut-off through dam.
GROUND	CONDITIONS	Dam FILL, and ALLUVIUM over argillaceous and karstic LIMESTONE with cavities, often clay-filled.		Random, impervious FILL with silty core over 25-30 ft	ALLUVIUM over chalky LIMESTONE	Dam FILL over CLAY.	Dam FILL, over sandy marly SHALE.
COMPOSITION	OF WALL	Concrete.		Plastic Concrete.	3,000 psi Concrete	Soil- Bentonite.	Concrete and soil-bentonite.
	I YPE OF WALL	24-inch diameter Primary Piles, joined by 24- inch wide clamshell panels. Two phases of work.		26-inch thick panels using cable and kelly-mounted	24-inch 24-inch panels 15-27 ft long	36-inch thick panel wall with clamshell excavation using Kelly.	24-inch-thick concrete paraled by Hydromili. Plus upstream joint protection by protection by protection by protection by
(CONTRACTOR	ICOS		Soletanche (Phase 1)	Bencor- Petrifond (Phase 2)	Soletanche [®]	Soletanche
DAM NAME AND	YEAR OF REMEDIATION	1. WOLF CREEK, KY. 1975-1979	2. W.F. GEORGE, AL.	1981	1983-1985	3. ADDICKS AND BARKER, TX. Completed in 1982 (Phase 1 took 5 months)	4. ST. STEPHENS, SC. 1984

* Soletanche have operated in the U.S. under different business identities over the years. "Soletanche" is used herein as the general term.

	References	 Cyganiewicz (1988) Soletanche (various) 	Davidson (1990)Dewey (1988)	 Soletanche brochures Eckerlin (1993) ENR (1990) Davidson et al. (1991) Graybeal and Levallois (1991) 	 DiCicco (2007) Personal Communication 	 Erwin (1994) Erwin and Glenn (1991) 	 Kulesza et al. (1994) Roberts and Ho (1991)
	Length	Approx. 6,000 ft	450 ft	700 ft	About 1,000 ft	Approx. 4,000 ft	849 ft
DF PROJECT	Depth	Max 180 ft including 16 to 160 ft into rock	Max 400 ft including over 50 ft into rock	Max 402 ft	Max 110 ft	Approx. 54 ft	80 to 223 ft
SCOPE (Min. Width	24 in	39 IJ.	33 in in abut- ments, 39 in in center	30 in	24 in	30 in
	Area	50,000 sf (LA test) plus 100,000 sf (RA test) plus 700,000 sf (Prod-uction)	130,000 sf	133,000 sf	95,000 sf	216,000 sf	124,320 sf
	PURPOSE OF WALL	To prevent piping of core into permeable sandstone abutment.	To prevent piping of core into permeable sandstone abutment.	To prevent seepage through the core.	To prevent seepage through and under the dam.	To prevent piping through the embankment.	Prevent piping through permeable core materials, in gap between original cut-off and rockhead.
GROUND	CONDITIONS	Dam FILL over horizontally bedded SANDSTONE.	Dam FILL over flat-lying SANDSTONE with Tayers of with Tayers of and SHALES. Very fractured, weathered and permeable with vertical and horizontal	Dam FILL silty and sandy, over very hard, blocky cemented ANDESITE (UCS over 20,000 psi).	FILL over stratified SAND	Dam FILL, over 30 ft of ALLUVIALS overlying SANDSTONE and SHALE.	Dam FILL with permeable zones over miscellaneous ALLUVIUM and very dense TILL.
COMPOSITION	OF WALL	Concrete and soil-bentonite.	Concrete.	Concrete.	Plastic Concrete.	Plastic concrete.	Concrete.
	TYPE OF WALL	24-inch-thick concrete panel wall installed by Hydromill. Minor soil- bentonite panels.	39-inch-thick panel wall installed by Hydromill.	33- and 39- inch-thick panel wall installed by Hydromill. Extensive pregrouting of core.	30-inch panel walls installed by clamshell	24-inch-thick panel wall installed by Hydromill.	30-inch-thick panel wall installed by clamshell and joint pipe ends.
	CONTRACTOR	Soletanche	Soletanche	Soletanche	ICANDA-ICOS	Bauer	Bencor- Petrifond
DAM NAME AND	YEAR OF REMEDIATION	5. FONTENELLE, WY. 1986-1988	6. NAVAJO, NM. 1987-1988	7. MUD MOUNTAIN, WA. 1988-1990, (Mainly over period December 1989 to April 1990)	8. STEWART'S BRIDGE HYDRO, NY 1990	9. WISTER, OK. 1990-1991 (6 months)	10. WELLS, WA. 1990-1991 (7 months, 208 working shifts)

	KEFERENCES	 Bruce and Dugnani (1996) Bruce and Stefani (1996) 	 Pagano and Pache (1995) Gagliardi and Routh (1993) 	• Murray (1994)	 Dinneen and Sheshkier (1997)
	LENGTH	1,475 ft	825 ft	850 ft	21,000 ft
DF PROJECT	Dертн	80 to 185 ft	130 to 170 ft including minimum 10 ft into lower glacial till	30 to 90 ft plus 5 ft into bedrock	Max 100 ft deep including at least 2.5 ft into rock
SCOPE (Min. Width	24 in	36 in	24 in	30 in
	Area	207,700 sf	125,000 sf	51,000 sf	1,400,000 sf
	PURPOSE OF WALL	To prevent seepage through karstic limestone under embankment.	To prevent seepage through glacial outwash deposits.	To prevent seepage through dike and alluvials.	To prevent seepage through dam foundation causing uplift or blowout.
GROUND	CONDITIONS	Dam FILL over very variable and permeable karstic LIMESTONE with open and clay-filled cavities. Some sandstone.	Dam FILL over very variable glacial TILL and OUTWASH comprising sand, gravel, cobbles, and boulders.	Very variable FILL, with rubble, cobbles, and boulders over sity CLAY over SHALE and LIMESTONE.	Dam FILL over CLAY and ALLUVIAL gravel often highly cemented (up to 15,000 psi) and SHALEY SAND-STONE bedrock.
COMPOSITION	OF WALL	Concrete.	Plastic Concrete.	Concrete.	Soil-cement- bentonite.
	I YPE OF WALL	24-inch-thick wall created by 34-inch secant columns at 24-inch centers.	36-inch-thick panel wall formed by Hydromill.	24-inch panel wall formed by clamshell and chisel. Upper portion pretrenched with backhoe and filled with cement- bentonite.	30-inch wide wall formed with panel methods (Kelly and cable suspended grabs, plus chisels, plus chisels, uso used.
	CONTRACTOR	Rodio- Nicholson	Bauer	ICOS	Granite-Bencor- Petrifond
DAM NAME AND	YEAR OF REMEDIATION	11. BEAVER, AR. 1992-1994 (22 months)	12. MEEK'S CABIN, WY. 1993	13. McALPINE LOCKS AND DAM, KY. 1994 (6 months)	14. TWIN BUTTES, TX. 1996-1999

	References	Uunbar and Sheahan (1999) USACE (2005)	Singh et al. (2005)	USACE (2004)	Ressi (2003) Ressi (2005)
	LENGTH	2,078 ft (dam) plus 1,315 ft (dike)	1,004 ft	• 2,083 ft	2,040 ft
DF PROJECT	DEPTH	Max 143 ft (avg. 89 ft) including 5 ft into rock (dam) blus Max 77' (avg. 57') including 5 ft into rock (dike)	20 to 75 ft	Max 120 ft including 2 ft into rock (avg. 69 ft)	100 ft of excavation (under 90 ft water)
SCOPE C	Min. Width	31.5 in	32 in	31.5 in	24 in
	AREA	185,021 sf (dam) plus 75,486 sf (dike)	55,000 sf (est)	143,000 sf	Approx. 300,000 sf including hydromil wall (50,000
:	PURPOSE OF WALL	To prevent seepage through the dam and foundation.	To prevent seepage through glacial and interglacial foundation sediments, especially 20-ft sand layer.	To prevent seepage through the foundation.	To prevent seepage through karstified bedrock under concrete dam section.
GROUND	CONDITIONS	Homogeneous permeable sand and gravel FILL over stratified glacial OUTWASH sands, gravels and cobbles over MICA SCHIST.	Heterogeneous glacial sediments including SILT, SAND, GRAVEL and TILL with hard Dileous boulders.	Zoned random and impermeable FILL over permeable stratified sand and gravel. Glacial OUTWASH oUTWASH GRANTITE GRANTITE GNEISS.	Over 90 ft of water over LIMESTONE with light karst, and very soft horizons (rock strength over 14,000 psi in places).
COMPOSITION	OF WALL	Concrete.	Plastic Concrete.	Concrete.	Concrete.
:	TYPE OF WALL	31.5-inch- wide panel wall formed by hydromill plus use of grab for initial excavation and boulder removal.	32-inch panel wall constructed by cable suspended clamshell.	31.5-inch panel wall constructed by hydromill plus clamshell for pre- excavation.	24-inch-thick secant pile wall (50-inch diameter at 33-inch centers) plus hydromill hydromill through concrete structures.
	CONTRACTOR	Bauer of America	Petrifond and Vancouver Pile Driving	Soletanche- McManus JV	TREVIICOS - Rodio
DAM NAME AND	YEAR OF REMEDIATION	15. HODGES VILLAGE, MA. 1997-1999	16. CLEVELAND, BC. 2001-2002 (4 months)	17. WEST HILL, МА. 2002-2002	18. W.F. GEORGE, AL. 2001-2003

	References	 Hornbeck and Henn (2001) Henn and Brosi (2005) 	 USACE (2006) Washington (2005) 	 Mauro et al. (2012) Bruce (2012) New Orleans (2012) 	 Harris (Personal Communication 2016) 	 Bassola et al. (2013) Bedford et al. (2013) Vannoy and Morales (2013) 	I
	LENGTH	2,600 ft	124 ft designed	22 miles	4,080 ft	3,800 ft	900 ft
OF PROJECT	Dертн	123 to 230 ft (including max 148 ft into limestone) av. 180 ft	125-180 ft (avg. 163 ft) with "anomaly" to 222 ft, including 10 ft into rock	60-80 ft	120-200 ft Including 40 ft into rock	Max 277 ft	Max 300 ft
SCOPE (MIN. WIDTH	30 in	8 E	24 in	32 in	24 in	Min. 30 in
	AREA	427,308 sf (330,127 embank- ment plus 97,181 in rock)	20,000 sf designed but only 13 of 22 piles completed	About 7 million sf	772,000	980,000 sf including about 650,000 sf PCEW	200,000 sf of cutoff including 100,000 sf PCEW
	PURPOSE OF WALL	To prevent piping into karstic limestone foundation.	To prevent seepage and piping in the glacial gorge.	To prevent seepage and internal erosion (partial penetration)	Cutoff through epikarst and into limestone as part of Composite Cutoff Wall.	Cutoff through epikarst and into limestone as part of Composite Cutoff Wall.	Cutoff through epikarst and into limestone as part of Composite Cutoff Wall.
	CONDITIONS	Dam FILL over karstic LIMESTONE (to 25,000 psi), very permeable and jointed.	Zoned EARTHFILL dam over dam over GLACIAL DEPOSITS with detached rock stass and MICA SCHIST.	Heterogeneous FILLS and peat over SANDS, SILTS and LIMESTONE.	Dam FILL over karstic LIMESTONE.	Dam FILL over karstic LIMETSTONE.	Dam FILL over karstic LIMETSTONE.
NOITISOGMOU	OF WALL	Concrete.	Concrete in Iower 100 ft, permeable backfill above.	Soil-cement- bentonite (TRD,CSM) and CB (TREVIICOS)	Concrete.	Concrete.	Concrete
	TYPE OF WALL	18-inch thick panel wall, using 30-inch hydromill, with clamshells through dam.	18-inch-thick secant wall using 79-inch piles at about 66-inch centers.	24 to 36-inch- thick wall: performance specification with different methods.	Min. 24-inch- thick wall with clamshell and hydromills.	6-foot-thick PCEW in embankment, 50-inch diameter below at 31- inch centers.	7.4-foot-thick PCEW in embankment and 30-inch hydromill below Some secant 186 feet.
	CONTRACTOR	Bencor- Petrifond	Raito	TREVIICOS (Hydromill) / Hayward Baker (TRD) / Bauer Foundations (CSM)	Bencor-Recon JV	TREVIICOS - Soletanche JV	Bauer Foundations
DAM NAME AND	YEAR OF REMEDIATION	19. MISSISSINEWA, IN. 2001-2005 (including shutdown for grouting)	20. WATERBURY, VT. 2003-2005	21. HERBERT HOOVER, FL. 2007-2013	22. CLEARWATER, MO. 2008-2011	23. Wolf CREEK, KY. 2008-2013	24. CENTER HILL, 10.22014 2012-2014

DAM NAME AND			COMPOSITION	GROLIND			SCOPE O	DF PROJECT		
YEAR OF REMEDIATION	CONTRACTOR	TYPE OF WALL	OF WALL	CONDITIONS	PURPOSE OF WALL	Area	Min. Width	Depth	LENGTH	REFERENCES
25. BOLIVAR, OH. 2014-2016	TREVIICOS	Min. 24-inch- thick wall with clamshell and hydromill.	Plastic Concrete	Dam FILL over GLACIAL OUTWASH over various SEDIMENTS.	Positive cutoff for flood control dam.	600,000 sf	36 in	30-144 ft	4,500 ft	 Taylor et al. (2016) Santillan and Hleplas (2015)
26. PINE CREEK, OK. 2016	Bauer Foundations	Drilled and cased secant piles. Minimum 36- width.	Concrete	Random embankment, FILL over SANDSTONE.	Positive cutoff to intercept a fracture above a culvert.	14,000 sf approx.	60 in	88 to 117 ft Incl. 2 ft into rock	133 ft	 White (Personal Communication 2017)
27. EAST BRANCH, PA. 2017 onwards	Bencor	Clamshell, hydromill and secant 18- inch min.	Concrete	Dam FILL over COLLUVIUM and ALLUVIUM over SANDSTONE.	Full length, full depth seepage cutoff	404,232 sf	32-42 in	Max 260 ft and up to 170 ft in bedrock	2,350 ft	 Greene and Sekela (2007) Greene and Sekela (2008) Greene et al. (2010)